
ISRAEL JOURNAL OF MATHEMATICS 165 (2008), 161–187

DOI: 10.1007/s11856-008-1008-z

THE DIFFIE-HELLMAN KEY EXCHANGE

PROTOCOL AND NON-ABELIAN NILPOTENT GROUPS

BY

Ayan Mahalanobis

Department of Mathematical Sciences, Stevens Institute of Technology,

Hoboken, NJ 07030, U.S.A.

e-mail: amahalan@stevens.edu

ABSTRACT

In this paper we study a key exchange protocol similar to the Diffie-

Hellman key exchange protocol, using abelian subgroups of the automor-

phism group of a non-abelian nilpotent group. We also generalize group

no. 92 of the Hall-Senior table [16] to an arbitrary prime p and show that,

for those groups, the group of central automorphisms is commutative. We

use these for the key exchange we are studying.

1. Introduction

In this paper we generalize the Diffie-Hellman key exchange protocol from a

cyclic group to a finitely presented non-abelian nilpotent group of class 2. Sim-

ilar efforts were made in [2, 3, 25] to use braid groups, a family of finitely

presented non-commutative groups [4, 10], in key exchange. We also refer to

[40, Section 3] for a formal description of a key exchange protocol similar to

ours1. Our efforts are not solely directed to construct an efficient and fast key

exchange protocol. We also try to understand the conjecture, the discrete loga-

rithm problem is equivalent to the Diffie-Hellman problem in a cyclic group. We

develop and study protocols where, at least theoretically, non-abelian groups

can be used to share a secret or exchange private keys between two people over

an insecure channel. This development is significant because nilpotent or, more
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specifically, p-groups have nice presentations and computation in those groups

is fast and easy [41, Chapter 9]. So our work can be seen as a nice applica-

tion of the advanced and developed subject of p-groups and computation with

p-groups.

The frequently used public key cryptosystems are slow and use mainly number

theoretic complexity. The specific cryptographic primitive that we have in mind

is the discrete logarithm problem, DLP for short. DLP is general enough

to be defined in an arbitrary cyclic group as follows: let G = 〈g〉 be a cyclic

group generated by g and let gn = h, where n ∈ N. Given g and h, DLP

is to find n [42, Chapter 6]. The security of the discrete logarithm problem

depends on the representation of the group. It is trivial in Zn, but is much

harder (no polynomial time algorithm known) in the multiplicative group of a

finite field and even harder (no sub-exponential time algorithm known) in the

group of elliptic curves which are not supersingular [6]. But with the invention

of sub-exponential algorithms for breaking the discrete logarithm problem, like

the index calculus and Coppersmith’s algorithm, multiplicative groups of finite

fields are no longer that attractive especially the ones of characteristic 2.

The discrete logarithm problem can be used in many other groups like the

group of elliptic curves, in which case a cyclic group or a big enough cyclic

component of an abelian group is used. In this article we propose a general-

ization of DLP or more specifically the Diffie-Hellman key exchange protocol

in situations where the group has more than one generator, i.e., in a finitely

presented non-abelian group. Let f be an automorphism of a finitely presented

group G generated by {a1, a2, . . . , an}. If one knows the action of f on a ∈ G,

i.e., f(a), then it is difficult for him to tell the action of f on any other b ∈ G

i.e., f(b). We describe this in detail later under the name “the general discrete

logarithm problem”. In this paper we work with finitely presented groups in

terms of generators and relations and do not consider any representation of that

group. Though that seems to be a good idea for future research.

Now suppose for a moment that G = 〈g〉 is a cyclic group and that we are

given g and gn where gcd(n, |G|) = 1.The DLP is to find n. Notice that in this

case the map x 7→ xn is an automorphism. If we conjecture that finding the

automorphism is finding n, then one way to see the DLP, in terms of group

theory, is to find the automorphism from its image on one element. This is the

central idea that we want to generalize to non-abelian finitely presented groups,
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especially to a family of p-groups of class 2. This explains our choice of the

name the general discrete logarithm problem.

To work with a finitely presented group and its automorphisms the following

properties of the group are needed.

• A consistent and natural representation of the elements in the group.

• Computation in the group should be fast and easy.

• The automorphism group should be known and the automorphisms

should have a nice enough presentation so that images can be com-

puted quickly.

We note at this point that for a p-group the first two requirements are satisfied

[41, Chapter 9].

2. Our Contribution in this article

The central idea behind this article is to study a generalization of the discrete

logarithm problem (DLP) that we call the general discrete logarithm problem

(GDLP). As a cryptographic primitive the concept of GDLP seems to be secure

(see Section 4.1).

To use GDLP we use a Diffie-Hellman like key exchange protocol using finitely

presented p-groups with an abelian central automorphism group. In this case

the security depends not only on GDLP but also on GDHP (see Section 4.2)

which turns out to be insecure in the specific case we are studying.

Section 8 of this paper contains a brief survey of all the group theoretic re-

sults necessary for understanding the latter part of this paper. However, readers

familiar with this subject might choose to ignore Section 8 altogether and come

back to it when required. In Section 10 we survey the existing literature for

groups with abelian automorphism group and show that none of them are ade-

quate for the key exchange we are studying.

We found no groups readily available in the literature, hence we had to de-

velop a family of groups Gn(m, p) with abelian central automorphism group

(Section 10). This is a significant contribution to the theory of finite groups

because Gn(m, p) is a generalization of group no. 92 of the Hall-Senior table.

We describe the group of automorphisms for these groups and further prove

that these groups are Miller if and only if p = 2.

We do not claim that the key exchange protocol is secure. Rather, we show

that the key exchange protocol is insecure for the particular family of groups
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that we picked. Our study raises two important questions which are of interest

both mathematically as well as cryptographically.

a: Are there groups different from Gn(m, p), with an abelian central au-

tomorphism group, for which the key exchange protocol is secure?

b: Does there exist any cryptographic protocol with reductionist security

proof, where the security of the protocol depends only on the discrete

logarithm problem? If one can find such a protocol using cyclic groups

then that could be generalized using GDLP, and since we claim that

GDLP is a secure primitive, this will give rise to a secure cryptosystem

using non-abelian groups.

3. Some notations and Definitions

We now describe some of the definitions and notation that will be used in this

paper. The notation used are standard:

• G will denote a finite group. Z = Z(G) denotes the center of the group

G and will be denoted by Z if no confusion can arise.

• G′ = [G,G] is the commutator subgroup of G.

• Aut(G) and Autc(G) are the group of automorphisms and the group of

central automorphisms of G, respectively.

• Φ(G) is the Frattini subgroup of G, which is the intersection of all

maximal subgroups of G.

• We denote the commutator of a, b by [a, b] where [a, b] = a−1b−1ab.

• The exponent of a p-group G, denoted by exp(G), is the largest power

of p that is the order of an element in G.

The following commutator formulas hold for any element a, b and c in any

group G.

(a) ab = a[a, b];

(b) [ab, c] = [a, c]b[b, c] = [a, c][a, c, b][b, c] it follows that in a nilpotent group

of class 2, [ab, c] = [a, c][b, c];

(c) [a, bc] = [a, c][a, b]c = [a, c][a, b][a, b, c] it follows that in a nilpotent

group of class 2, [a, bc] = [a, b][a, c];

(d) [a, b]−1 = [b, a].
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The proof of these formulas follow from direct computation or can be found

in [23].

Definition (Miller Group): A groupG is called a Miller group if it has an abelian

automorphism group, in other words, if Aut(G) is commutative, then the group

G is Miller.

Definition (Central Automorphisms): Let G be a group, then φ ∈ Aut(G) is

called a central automorphism if g−1φ(g) ∈ Z(G) for all g ∈ G. Alternately, one

might say that φ is a central automorphism if φ(g) = gzφ,g where zφ,g ∈ Z(G)

depends on g and φ. If φ is clear from the context then we can simplify the

notation as φ(g) = gzg.

Apart from inner automorphisms, central automorphisms are second best in

terms of nice description. They are very attractive for cryptographic purposes,

since it is easy to describe the automorphisms and compute the image of an

arbitrary element.

Theorem 3.1: The centralizer of the group of inner automorphisms is the

group of central automorphisms. Moreover a central automorphism fixes the

commutator elementwise.

See normal operators [46, p. 52].

Definition (Polycyclic Group): Let G be a group, a finite series of subgroups

in G

G = G0 D G1 D G2 D G3 D · · · D Gn = 1

is a polycyclic series if Gi/Gi+1 is cyclic and Gi+1 is a normal subgroup of Gi.

Any group with polycyclic series is a polycyclic group.

It is easy to prove that finitely generated nilpotent groups are polycyclic,

hence any finitely generated p-group is polycyclic. Let ai be an element in Gi

whose image generates Gi/Gi+1. Then the sequence {a1, a2, . . . , an} is called a

polycyclic generating set. It is easy to see that g ∈ G can be written as g =

aα1
1 aα2

2 · · · aαn

n , where αi are integers. If g = aα1
1 aα2

2 · · ·aαn

n where 0 ≤ αi < mi,

mi = |Gi : Gi+1|, then the expression is a collected word. Each element g ∈ G

can be expressed by a unique collected word. Computation with these collected

words is easy and implementable in computer, for more information on this

topic see [41, Section 9.4] and also [15, polycyclic package].
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4. Key Exchange

We follow the Diffie-Hellman and Massey-Omura key exchange protocol using a

commutative subgroup of the automorphism group of a finitely presented group

G. The security of the Diffie-Hellman key exchange protocol in a cyclic group

rests on the following three factors:

DLP: The discrete logarithm problem.

DHP: The Diffie-Hellman problem.

DDH: The decision Diffie-Hellman problem [5, 7, 14, 39, 44].

We have already described the discrete logarithm problem. The Diffie-Hellman

problem is the following: let G = 〈g〉 be a cyclic group of order n. One knows

g, ga and gb, and the problem is to compute gab. It is not known if DLP is

equivalent to DHP. The decision Diffie-Hellman problem is more subtle. Sup-

pose that DHP is a difficult problem, so it is impossible to compute gab from

ga, gb and g. But what happens if someone can compute or predict 80% of

the binary bits of gab from ga, gb and g, then the adversary will have 80% of

the shared secret or the private key; that is most of the private key. This is

clearly unacceptable. It is often difficult to formalize DDH in exact mathemat-

ical terms [7, Section 3]; the best formalism offered is a randomness criterion

for the bits of the key. In DDH we ask the following question, given the triple

ga, gb and gc is c = abmodn? But there is no known link between DDH and

any mathematically hard problem for the Diffie-Hellman key exchange protocol

in cyclic groups.

Clearly, solving the discrete logarithm problem solves the Diffie-Hellman

problem and solving the Diffie-Hellman problem solves the decision Diffie-Hell-

man problem.

As usual, we denote by Alice and Bob, two people trying to set up a private

key over an insecure channel to communicate securely and Oscar an eavesdrop-

ping adversary. In this paper the shared secret or the private key is an element

of a finitely presented group G.

4.1. General Discrete Logarithm Problem. LetG = 〈a1, a2, . . . , an〉 and

f : G→ G be a non-identity automorphism. Suppose one knows f(a) and a ∈ G

then GDLP is to find f(b) for any b in G. Assuming the word problem is easy



Vol. 165, 2008 A COMMUTING KEY PROTOCOL 167

or presentation of the group is by means of generators, GDLP is equivalent to

finding f(ai) for all i which gives us a complete knowledge of the automorphism.

So, in other words, the cryptographic primitive GDLP is equivalent to, “finding

the automorphism f from the action of f on only one element”.

4.2. General Diffie-Hellman Problem. Let φ, ψ : G → G be arbitrary

automorphisms such that φψ = ψφ, and assume one knows a, φ(a) and ψ(a).

Then GDHP is to find φ(ψ(a)). Notice that GDHP is a restricted form of

GDLP, because in case of GDHP one has to compute φ(ψ(a)) for some fixed

a, not φ(b) for an arbitrary b in G. There is an interesting GDHP attack

due to Vladimir Shpilrain. To mount this attack one need not find φ but

finds another automorphism φ′ such that φ′ψ = ψφ′ and φ′(a) = φ(a). Since

φ(ψ(a)) = ψ(φ′(a)) = φ′(ψ(a)), the knowledge of the φ′ breaks the system. We

will refer to this attack as the Shpilrain’s attack.

We now describe two key exchange protocols and do some cryptanalysis. We

denote by G a finitely presented group and S an abelian subgroup of Aut(G).

5. Key Exchange Protocol I

Alice and Bob want to set up a private key. They select a group G and an

element a ∈ G \ Z(G) over an insecure channel. Then Alice picks a random

automorphism φA ∈ S and sends Bob φA(a). Bob similarly picks a random

automorphism φB ∈ S and sends Alice φB(a). Both of them can now compute

φA(φB(a)) = φB(φA(a)) which is their private key for a symmetric transmission.

Step 1: Alice and Bob select the group G and an element a ∈ G \ Z(G)

in public. Notice that G and a are public information.

Step 2: Alice and Bob pick at random two automorphisms φA and φB

from S, respectively. Notice that φA and φB are private information.

Step 3: Alice and Bob compute φA(a) and φB(a) respectively and ex-

changes them. Notice that φA(a) and φB(a) are public information.

Step 4: Both of them compute φA (φB(a)) = φB (φA(a)) from their pri-

vate information; which is their private key.

5.1. Comments on Key Exchange Protocol I. Initially it might seem that

we do not have enough information to know the automorphisms φA and φB.

But it turns out that if we are using automorphisms which fix conjugacy classes,
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like inner automorphisms, then the security of the above scheme actually rests

on the conjugacy problem.

Let φA(a) = x−1ax and φB(a) = y−1ay for some x and y. Then φA(φB(a)) =

(yx)−1a(yx). Since a, φA(a) and φB(a) are known, if the conjugacy problem is

easy in the group then anyone can find x and y and break the system.

In the above scheme Oscar knows G and a. If the automorphisms are central

automorphisms, then he also sees φA(a) = azφA,a and φB(a) = azφB,a. Oscar

can compute zφA,a and zφB ,a. Now if G is a special p-group (G′ = Z(G) = Φ(G))

then Z(G) is fixed elementwise by both φA and φB. Then

(1) φA(φB(a)) = φA(azφB,a) = azφA,azφB,a.

Oscar knows a and can compute zφA,a and zφB ,a and can find the private key

φA(φB(a)). In the literature all examples of Miller p-group with odd prime p

are special and the above key exchange is fatally flawed for those groups.

6. Key Exchange Protocol II

In this case Alice and Bob want to set up a private key and they set up a group

G over an insecure channel. Alice chooses a random non-central element g and

a random automorphism φA ∈ S and sends Bob φA(g). Bob picks another

automorphism φB ∈ S and computes φB(φA(g)) and sends it back to Alice.

Alice, knowing φA, computes φ−1
A which gives her φB(g) and picks another

random automorphism φH ∈ S and computes φH(φB(g)) and sends it back to

Bob. Bob, knowing φB computes φ−1
B which gives him φH(g) which is their

private key. Notice that Alice never reveals g in public.

Step 1: Alice and Bob set up the group G. Notice that G is public infor-

mation.

Step 2: Alice picks g ∈ G \ Z(G) and a random φA ∈ S. Then she

computes φA(g) and sends that to Bob. Notice that g and φA are

private but φA(g) is public.

Step 3: Bob picks φB ∈ S at random and computes φB (φA(g)) and sends

that back to Alice. Notice that φB is private but φB (φA(g)) is public.
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Step 4: Alice computes φ−1
A and then computing φ−1

A (φB (φA(g))) she

gets φB(g).

Step 5: Alice now picks another random automorphism φH ∈ S and com-

putes φH (φB(g)) and φH(g). She then sends φH (φB(g)) to Bob but

keeps φH(g) private.

Step 6: Similar to Step 4, Bob computes φH(g). Now both Alice and

Bob know φH(g) and it is their common key.

6.1. Comments on Key Exchange Protocol II. Notice that for central

automorphisms, φA and φB, φA(g) = gzφA,g; since g is not known Oscar does

not know zφA,g but if G is special (Z(G) = G′ = Φ(G)), then φB(gzφA,g) =

gzφB ,gzφA,g from which zφB,g can be computed. Now φH(φB(g)) = gzφB,gzφH ,g

is a public information; so using zφB,g one can compute gzφH ,g, which is φH(g)

and the scheme is broken. As one clearly sees, this attack is not possible if the

group is not special.

The reader might have noticed at this point that all the attacks are GDHP.

So certainly in some groups GDHP is easy, even though GDLP is hard.

As we know, any automorphism in G can be seen as a restriction of an inner

automorphism in Hol(G) (see [29, 45] for further details on the holomorph of a

group). Solving the conjugacy problem in Hol(G) will break the key exchange

protocols for any automorphism. On the other hand, operation in Hol(G) is

twisted so it is possible that the conjugacy problem in Hol(G) is difficult even

though it is easy in G. Since any cyclic group is a Miller group, success of

the holomorph attack would prove insecurity in DLP. Therefore we believe that

the holomorph attack will not be successful in many cases. Though more work

needs to be done on this.

7. Key Exchange using Braid Groups

In [25] a similar key exchange protocol was defined, in this section we mention

some similarities of their approach to ours. We also mention how our system

generalizes their system which uses braid groups. See also [8].

We define braid group as a finitely presented group, though there are fancy

pictorial ways to look at braids and multiplication of braids. An interested
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reader can look in [4, 10]. The braid group Bn with n-strands is defined as:

Bn = 〈σ1, . . . , σn−1 : σiσjσi = σjσiσj if |i− j| = 1, σiσj = σjσi if |i− j| ≥ 2〉

In [25], the authors found two subgroups A and B of the group of inner automor-

phisms of Bn, Inn(Bn), such that, if φ ∈ A and ψ ∈ B, then φ(ψ(g)) = ψ(φ(g))

for g ∈ Bn. Then the key exchange proceeds similar to the Key Exchange Pro-

tocol I above; with the restriction that Alice chooses automorphisms from A

and Bob chooses automorphisms from B. There is also a different approach to

key exchange using braid groups as in [2, 3].

In the same spirit as [25] we can develop a key exchange protocol similar to

the Key Exchange Protocol I, where we take two subgroups A and B in Aut(G)

such that for φ ∈ A and ψ ∈ B, φ(ψ(g)) = ψ(φ(g)) for all g ∈ G. The use

of inner automorphisms is only possible when the conjugacy or the generalized

conjugacy problem (conjugator search problem) is known to be difficult.

There are significant differences between our approach and that in [25]. In

[25], the authors choose a group and then try to use that group in cryptography.

On the other hand, we take the fundamental concept as the discrete logarithm

problem, generalize it using automorphisms of a non-abelian group and then

look for groups favorable to us. The fact that the central idea in braid group

key exchange turns out to be similar to ours is encouraging.

It is intuitively clear at this point that we should start looking for groups

with abelian automorphism group, i.e., Miller groups.

8. Some useful facts from group theory

The term Miller Group is not that common in the literature. It was introduced

by Earnley [11]. Miller was the first to study groups with abelian automorphism

group [34]. Cyclic groups are good examples of Miller groups. G. A. Miller also

proved that no non-cyclic abelian group is Miller.

Charles Hopkins began a list of necessary conditions for a Miller group in

1927 [19]. He complained that very little is known about those groups. The

same is true today. Except for some sporadic examples of groups with abelian

automorphism groups, there is no sufficient condition known for a group to be

Miller.



Vol. 165, 2008 A COMMUTING KEY PROTOCOL 171

We now state some known facts about Miller groups which are available in

the literature and which we shall need later. For proof of these theorems which

we present in a rapid fire fashion, the reader can look in any standard text

books, like [23, 36], and the references therein.

Proposition 8.1: If G is a non-abelian Miller group, then G is nilpotent and

of class 2.

Proof. It follows from the fact that the group of inner automorphisms commute

and G/Z(G) ∼= Inn(G).

Since a nilpotent group is a direct product of its Sylow p-subgroups Sp, and

Aut(A × B) = Aut(A) × Aut(B) whenever A and B are of relatively prime

order, it is enough to study Miller p-groups for a prime p.

Proposition 8.2: If G is a p-group of class 2, then exp(G′) = exp(G/Z(G)).

Proposition 8.3: In a p-group of class 2, (xy)n = xnyn[y, x]
n(n−1)

2 . Further-

more, if exp(G′) = n is odd, then (xy)n = xnyn.

By definition, in a Miller group all automorphisms commute. Since central

automorphisms are the centralizers of the group of inner automorphisms, we

have proved the following theorem.

Theorem 8.4: In a Miller group G, all automorphisms are central.

It follows that in order to show that a group is not Miller, all we have to do

is to produce a non-central automorphism.

Proposition 8.5: If the commutator and the center coincide, then every pair

of central automorphisms commute.

Proof. Let G be a group such that G′ = Z(G). Then let φ and ψ be central

automorphisms given by φ(x) = xzφ,x and ψ(x) = xzψ,x where zφ,x, zψ,x ∈ G′.

Then

ψ(φ(x)) = ψ(xzφ,x) = ψ(x)zφ,x = xzψ,xzφ,x = xzφ,xzψ,x = φ(ψ(x)).

Definition (Purely non-abelian group): A group G is said to be a purely non-

abelian group (PN group for short) if whenever G = A×B where A and B are

subgroups of G with A abelian, then A = 1. Equivalently G has no non-trivial

abelian direct factor.
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Let σ : G → G be a central automorphism. Then we define a map

fσ : G → Z(G) as follows: fσ(g) = g−1σ(g). Clearly this map defines a

homomorphism. The map σ 7→ fσ is clearly a one-one map. Conversely, if

f ∈ Hom(G,Z(G)), then we define a map σf (g) = gf(g), x ∈ G. Clearly σf is

an endomorphism. It is easy to see that

Ker(σf ) = {x ∈ G : f(x) = x−1}.

Hence it follows that σf is an automorphism if and only if f(x) 6= x−1 for all

x ∈ G with x 6= 1.

Theorem 8.6: In a purely non-abelian group G, the correspondence σ → fσ

is a one-one map of Autc(G) onto Hom(G,Z(G))

Proof. See [1].

For any f ∈ Hom(G,Z(G)) there is a map f ′ ∈ Hom(G/G′, Z(G)) since

f(G′) = 1. Furthermore, corresponding to f ′ ∈ Hom(G/G′, Z(G)) there is a

map f : G→ Z(G) explained in the following diagram

G
η

−−−−→ G/G′
f ′

−−−−→ Z(G)

where η is the natural epimorphism.

Let G be a p-group of class 2, such that exp(Z(G)) = a, exp(G′) = b and

exp(G/G′) = c and let d = min(a, c). Now from the fundamental theorem of

abelian groups, let

G/G′ = A1 ⊕A2 ⊕ · · · ⊕Ar where Ai = 〈ai〉

Z(G) = B1 ⊕B2 ⊕ · · · ⊕Bs where Bi = 〈bi〉

r, s ∈ N be the direct decomposition of G/G′ and Z(G). If the cyclic component

Ak = 〈ak〉 has exponent greater or equal to the exponent of Bj = 〈bj〉, then

one can define a homomorphisms f : G/G′ → Z(G) as follows

f(ai) =







bj where i = k

1 where i 6= k

From this discussion it is clear that for f ∈ Hom(G,Z(G)), f(G) generates the

subgroup

R = {z ∈ Z(G) : |z| ≤ pd, d = min(a, c)}.
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Definition (Height): In any abelian p-group A written additively, there is a

descending sequence of subgroups

A ⊃ pA ⊃ p2A ⊃ · · · ⊃ pnA ⊃ pn+1A ⊃ · · · .

Then x ∈ A is of height n if x ∈ pnA but not in pn+1A. In other words

the elements of height n are those that drop out of the chain in the (n + 1)th

inclusion. For further information on height see [22].

Since for a class 2 group we have

exp(G/G′) ≥ exp(G/Z(G)) = exp(G′)

it follows that c ≥ b. Hence if d = min(a, c), then either d = b or d > b.

Let height(xG′) ≥ b, then xG′ = yp
b

G′ for some y ∈ G. Then for any

F ∈ Hom(G,G′), F (yG′)p
b

= 1 implying xG′ ∈ F−1(1). Conversely, let

height(xG′) < b. Then from the previous discussion it is clear that there is

a F ′ ∈ Hom(G/G′, G′) such that xG′ is not in the kernel, consequently there

is a F ∈ Hom(G,G′) such that x /∈ ker(F ). Combining these two facts we see

that:

K =
⋂

F∈Hom(G,G′)

F−1(1) = {x ∈ G : height(xG′) ≥ b}

Proposition 8.7: K ⊆ R.

Proof. In a class 2 group, if x ∈ K, then xG′ = yp
b

G′ for some y ∈ G and

exp(G/Z) = b and G′ ⊆ Z(G), hence x ∈ Z(G).

Let x ∈ K, then height(xG′) ≥ b, hence there is a y ∈ G such that yp
b

G′ =

xG′ i.e., x = yp
b

z where z ∈ G′ and yp
c

∈ G′ and c ≥ b. We have

xp
c

= (yp
b

)p
c

zp
c

= (yp
c

)p
b

= 1

Hence |x| ≤ min(pa, pc) which implies that x ∈ R.

Proposition 8.8: For a PN group G of class 2, if Autc(G) is abelian, then

R ⊆ K.

Proof. In a PN group, using Theorem 8.6 and the notation there, two central

automorphisms σ and τ commute if and only if fσ, fτ ∈ Hom(G,Z(G)) com-

mute. Then for any f ∈ Hom(G,Z(G)) and F ∈ Hom(G,G′) we have that

f ◦ F = F ◦ f = 1. Since f(G′) = 1, clearly F ◦ f(G) = 1 proving that

R ⊆ K.
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Combining the above two propositions, one proves that in a PN group G of

class 2, if Autc(G) is abelian, then R = K. As discussed earlier, there are two

cases d = b and d > b. Adney and Yen prove that

Proposition 8.9: If G is a non-abelian p group of class 2, and Autc(G) is

abelian with d > b, then R/G′ is cyclic.

Proof. See [1, Theorem 3].

Theorem 8.10 (Adney and Yen): Let G be a purely non-abelian group of class

2, p odd, let G/G′ =
∏n
i=1{xiG

′}. Then the group Autc(G) is abelian if and

only if

(i) R = K;

(ii) either d = b or d > b and R/G′ = {xp
b

1 G
′}.

Proof. See [1, Theorem 4].

From the proof of Proposition 8.5 it follows that in a groupG with Z(G) ≤ G′,

the central automorphisms commute.

Theorem 8.11: The group of central automorphisms of a p-group G, where p

is odd, is a p-group if and only if G has no non-trivial abelian direct factor.

Proof. See [37, Theorem B] and its corollary.

At this point we concentrate on building a cryptosystem. We note that

Miller groups in particular have no advantage over groups with abelian central

automorphism group. It is hard to construct Miller groups and there is no

known Miller group for an odd prime, which is not special. So we now turn to

a group G such that Aut(G) is not but Autc(G) is abelian. We propose to use

Autc(G) rather than Aut(G) in the key exchange protocols described earlier.

9. Signature Scheme based on conjugacy problem

Assume that we are working with a group G with commuting inner automor-

phisms.

Alice publishes α and β where β = a−1αa and keeps a a secret. To sign a



Vol. 165, 2008 A COMMUTING KEY PROTOCOL 175

text x ∈ G she picks an arbitrary element k ∈ G and computes γ = kαk−1 and

then computes δ such that x = (δk)(aγ)−1. Now notice that

xαx−1 =(δk)(aγ)−1α((δk)(aγ)−1)−1

=(δk)γ−1a−1αaγk−1δ−1

=δγ−1a−1kαk−1aγδ−1 Inner automorphisms commute

=δγ−1a−1γaγδ−1

=δa−1γaδ−1

=δ(kβk−1)δ−1 γ = kαk−1 ⇒ a−1γa = kβk−1

So to sign a message x ∈ G Alice computes δ as mentioned and sends x, (kδ).

To verify the message one computes L = xαx−1 and R = δkβ(δk)−1. The

message is authentic only if L = R.

There is a similar signature scheme in [24], where they exploit the gap between

the computational version (conjugacy problem) and the decision version of the

conjugacy problem (conjugator search problem) in braid groups. We followed

the ElGamal signature scheme closely [Chapter 7]stinson.

9.1. Comments on the above Signature Scheme. If one can solve conju-

gacy problem in the group, then from the public information α and β he can

find out a and our scheme is broken. Conjugacy problem is known to be hard in

some groups and hence it seems to be a reasonable assumption at this moment.

There is another worry: if Alice sends k and δ separately then one can find

a from the equation x = (δk)(aγ)−1, since γ is computable. However, this is

circumvented easily by sending the product δk not δ and k individually and

keeping k random.

10. An interesting family of p-groups

It is well-known that cyclic groups have abelian automorphism groups. The first

person to give an example of a non-abelian group with an abelian automorphism

groups was G. A. Miller [34] which was generalized by Struik [43]. There are

three non-abelian groups with abelian automorphism group in the Hall-Senior

table [16], they are nos. 91, 92 and 99. Miller’s example is no. 99. In [20], Jamali
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generalized nos. 91 and 92. His generalization of no. 91 is in one direction, it

increases the exponent of the group.

Jamali in the same paper generalizes group no. 92 in two directions, the

size of the exponent and the number of generators. His generalization was

restrictive in that it works only for the prime 2. There are other examples of

families of Miller p-groups in the literature, the most notable one is the family

of p-groups, for an arbitrary prime p, given by Jonah and Konisver [21]. This

was generalized to an arbitrary number of generators by Earnley [11]. There

are other examples by Martha Morigi [35] and Heineken and Liebeck in [18].

All these examples of Miller groups given [11, 18, 21, 35] are special groups,

i.e., the commutator and the center are the same. As noted earlier, for special

groups the key exchange protocols do not work. So there is no Miller p-group,

readily available in the literature, for arbitrary prime p which can be used right

away in construction of the protocol. The only other source are groups nos. 91,

92 and 99 in the Hall Senior table [16] and their generalizations, notice that

these groups are not special but are 2-groups. Of the three generalizations, the

generalization of no. 92 best fits our criterion because it is generalized in two

directions, viz. number of generators and exponent of the center and moreover it

is not special; Z(G) = A×G′ where A is a cyclic group. So once we generalize it

for arbitrary primes, it has “three degrees of freedom”, the number of generators,

exponent of center and the prime; which makes it attractive for cryptographic

purposes.

In the rest of the section we use Jamali’s definition [20] to define a family of p-

groups for arbitrary prime. So this family is a generalization of Jamali’s example

and assuming transitivity of generalizations, ultimately a generalization of group

no. 92 in the Hall-Senior table [16]. We study automorphisms of this group and

show that the group is Miller if and only if p = 2, but this family of groups

always has an abelian central automorphism group which is fairly large. We

then attempt to build a key exchange protocol as described earlier using the

central automorphisms. We start with the definition of the group Gn(m, p).

Definition: Let Gn(m, p) be a group generated by n+1 elements {a0, a1, . . . , an}

where p is a prime number and m ≥ 2 and n ≥ 3 are integers. The group is
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defined by the following relations:

ap1 = 1, ap
m

2 = 1, ap
2

i = 1 for 3 ≤ i ≤ n, apn−1 = ap0.

[a1, a0] = 1, [an, a0] = a1, [ai−1, a0] = api for 3 ≤ i ≤ n.

[ai, aj ] = 1 for 1 ≤ i < j ≤ n.

We state some facts about the group Gn(m, p) whose proof is by direct com-

putation [30, Section 2.9].

a: Gn(m, p)′ the derived subgroup of Gn(m, p) is an elementary abelian

group 〈a1, a
p
3, . . . , a

p
n〉 ≃ Z

n−1
p .

b: Z(Gn(m, p)) = 〈ap2〉 ×G′.

c: Gn(m, p) is a p-group of class 2.

d: Gn(m, p) is a PN group.

Proposition 10.1: Gn(m, p) is a polycyclic group and every element of g ∈

Gn(m, p) can be uniquely expressed in the form g = aα0
0 aα1

1 aα2
2 aα3

3 · · · aαn

n , where

0 ≤ αi < p for i = 0, 1; 0 ≤ α2 < pm, 0 ≤ αi < p2 for i = 3, 4, . . . , n.

Proof. Define G0 = Gn(m, p) = 〈a0, a1, a2, . . . , an〉, G1 = 〈a1, a2, . . . an〉 and

similarly Gk = 〈ak, ak+1, . . . , an〉 for k ≤ n. Since G1 is a finitely generated

abelian group, it is a polycyclic group [41, Proposition 3.2]. It is fairly straight-

forward to show that

G1 ⊲ G2 ⊲ · · · ⊲ Gn ⊲ 〈1〉

is a polycyclic series and {a1, . . . , an} a polycyclic generating sequence of G1.

It is easy to see from the relations of the group that G1 is normal in G0 and

G0/G1 is cyclic. It is also straightforward to show that 〈aiGi+1〉 = Gi/Gi+1 and

|aiGi+1| = |ai| and hence any element of the group has a unique representation

of the above form. We would call an element represented in the above form a

collected word. See also [41, Chapter 9, Proposition 4.1].

Computation with Gn(m, p). Our group Gn(m, p) is of class 2, i.e., com-

mutators of weight 3 are identity, computations become real nice and easy.

Let us demonstrate the product of two collected words g = aα0
0 aα1

1 aα2
2 aα3

3 aα4
4

and h = aβ0

0 aβ1

1 aβ2

2 aβ3

3 aβ4

4 . To compute gh we use concatenation and form the

word aα0
0 aα1

1 aα2
2 aα3

3 aα4
4 aβ0

0 aβ1

1 aβ2

2 aβ3

3 aβ4

4 and note that ai’s commute except for
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a0 hence one tries to move a0 towards the left using the identity

aia0 = a0ai[ai, a0] =







a0aia
p
i+1 for 1 ≤ i < n

a0aia1 for i = n.

Further note, since commutators are in the center of the group, api+1 or a1 can

be moved anywhere. Once a0 is moved to the extreme left the word formed is

the collected word of gh. This process is often referred to in the literature as

collection. Computing the inverse of an element can be similarly done.

We now prove that the group of central automorphisms of the group Gn(m, p)

for an arbitrary prime p is abelian. For sake of simplicity we denote Gn(m, p)

by G for the rest of the article, and use notation from Theorem 8.10.

Lemma 10.2: In G, R = Z(G) = K.

Proof. Using the notation from Theorem 8.10, we see that in G, a = m − 1,

b = 1 and c = m hence d = m − 1. Clearly, R = Z(G) hence K ⊆ Z(G).

Let x ∈ Z(G), if x ∈ G′ then height(xG′) = ∞ and we are done. If not,

then x = z1z2 where z1 ∈ 〈ap2〉 and z2 ∈ G′. Then xG′ = z1G
′ and hence

height(xG′) ≥ 1.

It is easy to see that R/G′ = Z(G)/G′ = 〈ap2G
′〉 and hence from Theorem

8.10 we prove the following

Theorem 10.3: Autc(G) is abelian.

10.1. Automorphisms of Gn(m, p). In this section we describe the automor-

phisms of groups of this kind. The discussion is, in more than one way, an

adaptation of the work of Jamali [20] and generalizes his main theorem.

Lemma 10.4: Let x = aβ0

0 aβ1

1 aβ2

2 · · · aβn

n , where βi, i = 0, 1, 2, . . . , n are integers

be an element of G. If p = 2, then β0 is 1 and

• x2 = aβn

1 a2β2

2 aγ33 · · · a
γn−2

n−2 a
γn−1+2
n−1 aγn

n for p = 2. Where γi = 2(βi−1+βi).

• xp = apβ2

2 apβ3

3 · · · a
pβn−2

n−2 a
pβn−1+pβ0

n−1 apβn

n for p 6= 2.

Proof. For the case p = 2 we just collect terms and use the relation a2
n−1 = a2

0.

For p 6= 2 using Proposition 8.3 we have

xp = (aβ0

0 aβ1

1 aβ2

2 · · · a
βn−1

n−1 a
βn

n )p = (aβ0

0 )p(aβ1

1 aβ2

2 · · ·a
βn−1

n−1 a
βn

n )p

= apβ0

0 apβ2

2 apβ3

3 · · ·apβn

n
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Using the relation apn−1 = ap0 we have

apβ0

0 apβ2

2 apβ3

3 · · · apβn

n = apβ2

2 apβ3

3 · · ·a
pβn−2

n−2 a
pβn−1+pβ0

n−1 apβn

n

For the group G we note that H = 〈a1, a2, a3, . . . , an〉 is the maximal abelian

normal subgroup of G and is characteristic. It follows that the Hp is also char-

acteristic. Following [20], we define two decreasing sequences of characteristic

subgroups {Ki}
n−1
i=0 such that

K0 = H and Ki/K
p
i−1 = Z(G/Kp

i−1) (1 ≤ i ≤ n− 1)

and {Li} such that

L0 = H and Li = {h : h ∈ H, hp ∈ [G,Li−1]} (1 ≤ i ≤ n− 1)

It follows easily that

Ki = 〈a1, a2, . . . , an−i, a
p
n−i+1, . . . , a

p
n〉 1 ≤ i ≤ n− 1

L1 = 〈a1, v, a3, . . . , an〉

Li = 〈a1, v, a
p
3, . . . , a

p
i+1, ai+2, . . . , an〉 2 ≤ i ≤ n− 1

where v = ap
m−1

2 . For 3 ≤ i ≤ n we have

Kn−i ∩ Li−2 = 〈a1, v, a
p
3, . . . a

p
i−1, ai, a

p
i+1, . . . , a

p
n〉 = 〈v, ai, G

′〉.

Also Kn−2 ∩ L0 = 〈a2, G
′〉.

Since 〈v, ai, G
′〉 and 〈a2, G

′〉 are characteristic, for any θ ∈ Aut(G),

θ(a2) = ak22 z where z ∈ G′ and k2 ∈ N

θ(ai) = aki

i v
riz where z ∈ G′; ki ∈ N; i = 3, 4, . . . , n; 0 ≤ ri < p.

It is clear that not all k2 and ki will make θ an automorphism. To begin with,

if θ is an automorphism then gcd(ki, p) = 1 for all ki, and we may choose ki,

such that 0 < ki < p for i = 3, 4, . . . , n.

Let θ(a0) = aβ0

0 aβ1

1 aβ2

2 · · ·aβn

n . Since θ(ap0) = θ(apn−1) = θ(an−1)
p = a

pkn−1

n−1 ,

from Lemma 10.4

a
pkn−1

n−1 = apβ2

2 apβ3

3 · · · a
pβn−2

n−2 a
pβn−1+pβ0

n−1 apβn

n for p 6= 2

implying β0 + βn−1 ≡ kn−1 mod p, pm−1|β2 and p|βi for i = 3, 4, . . . , n − 2, n.

Hence θ(a0) = ak00 a
βn−1

n−1 v
rz where 0 ≤ r < p. We changed β0 to k0 to maintain

uniformity in notations.
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Notice the relation [ai, a0] = api+1 for i = 2, 3, . . . , n implies that

[θ(ai), θ(a0)] = θ(ai+1)
p = a

pki+1

i+1 .

It follows that [aki

i , a
k0
0 a

βn−1

n−1 ] = a
pki+1

i+1 which is the same as [aki

i , a
k0
0 ] = a

pki+1

i+1 ,

which implies that [ai, a0]
k0ki = a

pki+1

i+1 . Recall that G is a p-group of class 2

and an−1 commutes with ai for i ≥ 2. From these we have a recursive formula

for ki, (also see [30, Theorem 2.9.7]): choose k0 such that 0 < k0 < p and k2

such that 0 < k2 < pm and gcd(k2, p) = 1 and then define ki+1 = k0ki mod p

for i = 2, 3, 4, . . . , (n− 1); and k1 = k0kn mod p. In [20, Proposition 2.3] Jamali

proves that for p = 2, all automorphisms of G are central. We have just proved

that for p 6= 2 there is a non-central automorphism, take k0 > 1; the following

theorem follows from Theorem 8.4.

Theorem 10.5: The group Gn(m, p) is Miller if and only if p = 2.

10.2. Description of the Central Automorphisms. Notice that G is

a PN group, so there is a one-one correspondence between Autc(G) and

Hom(G,Z(G)). Since it is known from our earlier discussion that Z(G) =

〈ap2〉×G
′, Hom(G,Z(G)) = Hom(G, 〈ap2〉)×Hom(G,G′). It follows: Autc(G) =

A×B where

A = {σ ∈ Autc(G) : x−1σ(x) ∈ 〈ap2〉}

B = {σ ∈ Autc(G) : x−1σ(x) ∈ G′}

Elements of A can be explained in a very nice way. Pick a random integer k

such that k = lp + 1 where 0 ≤ l < pm−1 and a random subset R (could be

empty) of {0, 3, 4, . . . , n}, and then an arbitrary automorphism in A is

σ(a1) = a1

σ(a2) = ak2

σ(ai) =







ai if i 6∈ R

ai

(

ap
m−1

2

)ri

if i ∈ R
(2)

We use indexing in {0, 3, 4, . . . , n} to order R and 0 < ri < p is an integer

corresponding to i ∈ R. Conversely, any element in A can be described this

way. It follows from the definition of A that

|A| = pm−1 × pn−1 = pm+n−2.
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The automorphism φ ∈ B is of the form

(3) φ(x) =







a1 if x = a1

aiz if x = ai, i ∈ {0, 2, 3, . . . , n}

where z ∈ G′.

We note that G/Z(G) is an abelian group and hence Inn(G) is abelian and

hence Inn(G) ⊆ Autc(G). We further note from the commutator relations in G

that Inn(G) ⊆ B.

10.3. Using these automorphisms in Key-Exchange Protocol I. Let

us briefly recall the key exchange protocol described before. Alice and Bob

decide on a group G and a non-central element g ∈ G \ Z(G) in public. Alice

then chooses an arbitrary automorphism φA and sends Bob φA(g). Similarly

Bob picks an arbitrary automorphism φB and sends Alice φB(g). Since the

automorphisms commute, both of them can compute φA(φB(g)), which is their

private key. The most devastating attack on the system is the one in which

Oscar, looking at g, φA(g) and φB(g), can predict what φA(φB(g)) will look

like, i.e., a GDHP attack.

Definition (Parity condition for elements in G): If g = aβ0

0 aβ1

1 aβ2

2 aβ3

3 · · · aβn

n is

an arbitrary element of G, i.e., 0 ≤ β0 < p, 0 ≤ β1 < p, 0 ≤ β2 < pm and

0 ≤ βi < p2 for 3 ≤ i ≤ n. Then the vector v := (β0, β3, β4, . . . , βn) is called the

parity of g. Two elements g and g′ are said to be of the same parity condition

if v = v′ mod p, where v′ is the parity of g′.

Lemma 10.6: If φ : G→ G is any central automorphism then g and φ(g) have

the same parity condition for any g ∈ G.

Proof. Notice that an automorphism φ either belongs to A or B or is of the

form φ(g) = gfφ(g)gφ(g) where fφ ∈ Hom(G,Z(G)) and gφ ∈ Hom(G,G′). So

we might safely ignore elements from A, since they only affect the exponent of

a2. Also note that a1 being in the commutator remains fixed under any central

automorphism.

So we need to be concerned with elements of B, from the description of B,

and each commutator is a word in p-powers of the generators and from the fact

that G′ ⊂ Z(G), the lemma follows.
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Now let us understand what an element in A does to an element g ∈ G. We

use notation from (2).

Lemma 10.7: Let g = aβ0

0 aβ1

1 aβ2

2 aβ3

3 · · · aβn

n , φ ∈ A and if

φ(g) = a
β′

0
0 a

β′

1
1 a

β′

2
2 a

β′

3
3 · · · a

β′

n

n ,

then βi = β′

i for i 6= 2 and β′

2 = kβ2 + pm−1
∑

i∈R riβi mod pm.

Proof. Notice that from (2), it is clear that elements of A only affect the expo-

nent of a2, so β′

i = βi for i 6= 2 follows trivially. From the definition of A and

simple computation it follows that β′

2 = kβ2 + pm−1
∑

i∈R riβi mod pm.

In the key exchange protocol I, we will only use automorphisms from2 A.

As noted earlier there are two kinds of attack, GDLP (the discrete logarithm

problem in automorphisms) and GDHP (the Diffie-Hellman problem in auto-

morphisms). We have earlier stated that GDLP is equivalent to finding the

automorphism from the action of the automorphism on one element. It seems

that for one to find the automorphism discussed in the previous lemma, one

has to find k, R and ri. Notice that β′

2 = kβ2 + pm−1
∑

i∈R riβi mod pm, is a

knapsack in β2 and pm−1. Solving that knapsack is not enough to compute the

image of any element, because R is not known so βi’s are not known. We shall

show in a moment that the security of the key exchange protocol depends on

the difficulty of this knapsack, but solving this knapsack does not help Oscar to

find the automorphism, just partial information about the automorphism comes

out.

Next we show that though it seems to be secure under GDLP, but if the

knapsack is solved then the system is broken by GDHP. This proves that GDHP

is a weaker problem than GDLP in Gn(m, p). Let g = aβ0

0 aβ1

1 aβ2

2 aβ3

3 · · · aβn

n ,

then as discussed before for φ, ψ ∈ Autc(G), with notation from Equation 2

and ki ∈ N for i = 3, 4, . . . , n:

φ(g) = aβ0

0 aβ1

1 a
k2β2+p

m−1 ∑

i∈R

riβi

2 aβ3+k3p
3 . . . aβ4+k4p

n(4)

ψ(g) = aβ0

0 aβ1

1 a
k′2β2+p

m−1 ∑

i∈R′

r′
i
βi

2 a
β3+k

′

3p
3 . . . a

β4+k
′

4p
n(5)

2 In light of Lemma 10.6, we believe that adding automorphisms from B will not add to

the security of the system.
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From direct computation it follows that the exponent of a2 in φ(ψ(g)) is

(6) k2

(

k′2β2 + pm−1
∑

i∈R′

r′iβi

)

+ pm−1
∑

i∈R

riβi

where k2 = lp+1 and k′2 = l′p+1, 0 ≤ l, l′ < pm−1. The exponent of a0, a1 stays

the same and the exponent of ai will be βi+(ki+k′i)pmod p2 for 3 ≤ i ≤ n. As

mentioned above, since we are using only automorphisms from A, i.e., φ and ψ

are in A hence ki = k′i = 0 for i = 3, 4, . . . , n.

Notice that g, (4) and (5) are public, so Oscar sees those. Since the exponents

of a0, a1, a3, . . . , an are predictable, the key Alice and Bob want to establish is

the exponent of a2 in φ (ψ(g)), which is given by (6). Since Oscar sees (4) and

(5), if he can compute k2 from k2β2 + pm−1
∑

i∈R riβi mod pm, then he can

compute pm−1
∑

i∈R riβi and the scheme is broken. But, k2 = lp+ 1 for some

l ∈ [0, pm−1) hence

k2β2 + pm−1
∑

i∈R

riβimod pm

reduces to

β2 + lpβ2 + pm−1
∑

i∈R

riβimod pm.

Since β2 is public, Oscar can compute lpβ2 + pm−1
∑

i∈R riβimod pm. Notice

that finding k2 is equivalent to finding l, hence one of the security assumptions

is that there is no polynomial time algorithm to find l from

(7) lpβ2 + pm−1
∑

i∈R

riβimod pm.

Let us write

(8) M = lpβ2 + pm−1
∑

i∈R

riβimod pm,

then

M = lpβ2 mod pm−1.

Now, if lp < pm−1 and gcd(β2, p) = 1, then one can find lp from the above

equation and the scheme is broken. So the only hope of making a secure cryp-

tosystem out of Key Exchange Protocol I and the group Gn(m, p) is to take

l = kpm−2 where k = 0, 1, 2, . . . , (p − 1). In this case, if we set l = lpm−2 and
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l′ = l′pm−2 in (6), then the key will be

(1+lpm−1)

(

(1 + l′pm−1)β2 + pm−1
∑

i∈R′

r′iβi

)

+ pm−1
∑

i∈R

riβi

=
(

1 + lpm−1 + l′pm−1
)

β2 + pm−1
∑

i∈R′

r′iβi + pm−1
∑

i∈R

riβimod pm

=

(

(

1 + lpm−1
)

β2 + pm−1
∑

i∈R

riβi

)

+ l′pm−1β2 + pm−1
∑

i∈R′

r′iβimod pm

Now the information in the last equation is easy to compute from the public

information, (4) and (5); so the Key Exchange Protocol I is broken for auto-

morphisms from A of Gn(m, p) when gcd(β2, p) = 1.

Now if gcd(p, β2) 6= 1, i.e., β2 = kpi for some i ∈ [1,m) and 1 ≤ k < p, then

an attack similar to the above breaks the system. The insight behind these

attacks is that any solution to (8) can be thought of as the image of g under an

automorphism φ′ ∈ A. We are talking about a solution to (8), which is easy to

find, for which φ′(g) = M and then Shpilrain’s attack breaks the system.

11. Implementation

There is no reason left to go into the details of an implementation. We briefly

mention that this cryptosystem can be implemented without any reference to

the group Gn(m, p). Once the element g = aβ0

0 aβ1

1 aβ2

2 · · ·aβn

n is fixed, Alice can

send Bob k2β2+p
m−1

∑

i∈R riβimod pm and similarly Bob can send Alice k′2β2+

pm−1
∑

i∈R′ r′iβimod pm. Since Alice and Bob know their own k2,
∑

i∈R riβi

and k′2,
∑

i∈R′ r′iβi respectively, they can both compute the private key or the

shared secret. Since the only operation involved in computing the private key

is multiplication and addition mod pm, there can be a very fast implementation

of this cryptosystem.

12. Conclusion

In this paper we studied a key exchange protocol using commuting automor-

phisms of a non-abelian p-group. Since any nilpotent group is a direct product of

its Sylow subgroups, the study of nilpotent groups can be reduced to the study

of p-groups. We argued that our study is a generalization of the Diffie-Hellman

key exchange and is a generalization of the discrete log problem. Other public
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key systems like the ElGamal cryptosystem which uses the discrete logarithm

problem are adaptable to our methods. This is the first attempt to generalize

the discrete logarithm problem in the way we did.

We should try to find other groups and try our system in terms of GDLP and

GDHP. As we noted earlier, GDHP is a subproblem of the GDLP, and we saw

in Gn(m, p), GDHP is a much easier problem than GDLP. Our example was of

the form d > b in Theorem 8.10. The next step is to look at groups where d = b.

We note from Theorem 8.11, if a p-group G is a PN group, then Autc(G) is a

p-group and since p-groups have non-trivial centers; one can work in that center

with our scheme. In this case we would be generalizing to arbitrary nilpotentcy

class while still working with central automorphisms.

Lastly we note that, if we were to use some representation for this finitely

presented group G, for example, matrix representation of the group over a finite

field Fq, then security of the system in Gn(m, p) would have become the discrete

logarithm problem in a matrix algebra [32, 33]. Since the discrete logarithm

problem in matrices is only as secure as the discrete logarithm problem in finite

fields, there is no known advantage to go for matrix representation, but there

might be other representations of interest.

There is one conjecture that comes out of this work and we end with that.

Conjecture 12.1: If G is a Miller p-group for an odd prime p, then G is

special.
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